首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6377篇
  免费   458篇
  国内免费   298篇
化学   1845篇
晶体学   25篇
力学   2386篇
综合类   34篇
数学   1297篇
物理学   1546篇
  2024年   3篇
  2023年   83篇
  2022年   74篇
  2021年   105篇
  2020年   143篇
  2019年   129篇
  2018年   127篇
  2017年   180篇
  2016年   217篇
  2015年   163篇
  2014年   271篇
  2013年   403篇
  2012年   325篇
  2011年   379篇
  2010年   318篇
  2009年   416篇
  2008年   396篇
  2007年   403篇
  2006年   308篇
  2005年   363篇
  2004年   249篇
  2003年   256篇
  2002年   222篇
  2001年   176篇
  2000年   136篇
  1999年   113篇
  1998年   113篇
  1997年   115篇
  1996年   82篇
  1995年   124篇
  1994年   86篇
  1993年   88篇
  1992年   53篇
  1991年   71篇
  1990年   51篇
  1989年   44篇
  1988年   64篇
  1987年   54篇
  1986年   55篇
  1985年   39篇
  1984年   30篇
  1983年   14篇
  1982年   44篇
  1981年   15篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1971年   4篇
  1970年   2篇
  1957年   2篇
排序方式: 共有7133条查询结果,搜索用时 15 毫秒
1.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
2.
Analytical solutions are reported for the scattering coefficients of a solid elastic sphere suspended in a viscous fluid for arbitrary partial wave order. Expressions are derived for incident compressional and shear wave modes, taking into account the viscosity of the surrounding fluid and resultant wave mode conversion. The long compressional wavelength limit is employed to simplify the derivation, whereas no restriction is placed on the shear wavelength in the fluid compared to the particle dimension. The analytical approximations are compared with numerical results obtained from matrix inversion of the boundary equations and agree within the validity domain of the solutions.  相似文献   
3.
This paper develops a modified smoothed particle hydrodynamics (SPH) method to model the coalescence of colliding non-Newtonian liquid droplets. In the present SPH, a van der Waals (vdW) equation of state is particularly used to represent the gas-to-liquid phase transition similar to that of a real fluid. To remove the unphysical behavior of the particle clustering, also known as tensile instability, an optimized particle shifting technique is implemented in the simulations. To validate the numerical method, the formation of a Newtonian vdW droplet is first tested, and it clearly demonstrates that the tensile instability can be effectively removed. The method is then extended to simulate the head-on binary collision of vdW liquid droplets. Both Newtonian and non-Newtonian fluid flows are considered. The effect of Reynolds number on the coalescence process of droplets is analyzed. It is observed that the time up to the completion of the first oscillation period does not always increase as the Reynolds number increases. Results for the off-center binary collision of non-Newtonian vdW liquid droplets are lastly presented. All the results enrich the simulations of the droplet dynamics and deepen understandings of flow physics. Also, the present SPH is able to model the coalescence of colliding non-Newtonian liquid droplets without tensile instability.  相似文献   
4.
为分析喷流冷却复合陶瓷薄片激光器的热特性,设计用于冷却复合陶瓷薄片的喷流冷却系统.利用湍流换热理论和计算流体动力学仿真方法建立喷流冷却复合陶瓷薄片激光器的流固耦合热仿真模型,定义评价其冷却能力和冷却均匀性的定量参数.根据该仿真模型得到喷流冷却系统的最优设计参数,并进行实验验证.使用163孔喷板,流量为0.2kg/s,入口温度为20℃,在1200 W泵浦时获得359 W激光输出功率,并测得复合陶瓷薄片上表面的最高温度为92℃.激光输出功率与复合陶瓷薄片上表面温度均与泵浦功率呈近似正线性关系,且温度的实验值与仿真值相符度较高.  相似文献   
5.
In this work, ultrasound-assisted electrocatalytic hydrogenation (US-ECHSA) of safrole was carried out in water medium, using sacrificial anode of nickel. The ultrasonic irradiation was carried out at frequency of 20 kHz ± 500 Hz with a titanium cylindrical horn (MS 73 microtip; Ti-6AI-4V alloy; 3.0 mm diameter). The optimal conditions were analyzed by statistical experimental design (fractional factorial). The influence of the sonoelectrochemical reactor design was also investigated by using computational fluid dynamics as simulation tool. Among the five parameters studied: catalyst type, use of β-cyclodextrin as inverse phase transfer catalyst, sonoelectrochemical reactor design, ultrasound mode and the temperature of the solution, only the last three were significant. The hydrogenation product, dihydrosafrole, reached 94% yield, depending on the experimental conditions applied. Data of computational fluid dynamics showed that a wing shape tube added to the sonoelectrochemical reactor can work as a cooling apparatus, during the electrochemical process. The reactional solution temperature diminishes 14 °C when compared to the four-way-type reactor. Cooper cathode, absence of β-cyclodextrin, four-way-type reactor, ultrasound continuous mode (14 W) and absence of temperature control were the most effective reaction parameters for the safrole hydrogenation using US-ECHSA method. The proposed approach represents an important contribution for understanding the hydrodynamic behavior of sonoelectrochemical reactors designs and, consequently, for the reducing of the experimental costs inherent to the sonoelectrochemical process.  相似文献   
6.
7.
Currently, there are no reliable biomarkers available that can aid early differential diagnosis of reactive arthritis (ReA) from other inflammatory joint diseases. Metabolic profiling of synovial fluid (SF)—obtained from joints affected in ReA—holds great promise in this regard and will further aid monitoring treatment and improving our understanding about disease mechanism. As a first step in this direction, we report here the metabolite specific assignment of 1H and 13C resonances detected in the NMR spectra of SF samples extracted from human patients with established ReA. The metabolite characterization has been carried out on both normal and ultrafiltered (deproteinized) SF samples of eight ReA patients (n = 8) using high-resolution (800 MHz) 1H and 1H─13C NMR spectroscopy methods such as one-dimensional 1H CPMG and two-dimensional J-resolved1H NMR and homonuclear 1H─1H TOCSY and heteronuclear1H─13C HSQC correlation spectra. Compared with normal SF samples, several distinctive 1H NMR signals were identified and assigned to metabolites in the 1H NMR spectra of ultrafiltered SF samples. Overall, we assigned 53 metabolites in normal filtered SF and 64 metabolites in filtered pooled SF sample compared with nonfiltered SF samples for which only 48 metabolites (including lipid/membrane metabolites as well) have been identified. The established NMR characterization of SF metabolites will serve to guide future metabolomics studies aiming to identify/evaluate the SF-based metabolic biomarkers of diagnostic/prognostic potential or seeking biochemical insights into disease mechanisms in a clinical perspective.  相似文献   
8.
We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando and Trebeschi (2008) [20]. The missing normal derivatives are compensated through the equations of the linearized vorticity and entropy when deriving higher-order energy estimates. The proof of the resolution for this nonlinear problem follows from certain a priori tame estimates on the effective linear problem in the usual Sobolev spaces and a suitable Nash–Moser iteration scheme.  相似文献   
9.
We extend our previous results characterizing the loading properties of a diffusing passive scalar advected by a laminar shear flow in ducts and channels to more general cross‐sectional shapes, including regular polygons and smoothed corner ducts originating from deformations of ellipses. For the case of the triangle and localized, cross‐wise uniform initial distributions, short‐time skewness is calculated exactly to be positive, while long‐time asymptotics shows it to be negative. Monte Carlo simulations confirm these predictions, and document the timescale for sign change. The equilateral triangle appears to be the only regular polygon with this property—all others possess positive skewness at all times. Alternatively, closed‐form flow solutions can be constructed for smooth deformations of ellipses, and illustrate how both nonzero short‐time skewness and the possibility of multiple sign switching in time is unrelated to domain corners. Exact conditions relating the median and the skewness to the mean are developed which guarantee when the sign for the skewness implies front (more mass to the right of the mean) or back (more mass to the left of the mean) “loading” properties of the evolving tracer distribution along the pipe. Short‐ and long‐time asymptotics confirm this condition, and Monte Carlo simulations verify this at all times. The simulations are also used to examine the role of corners and boundaries on the distribution for short‐time evolution of point source , as opposed to cross‐wise uniform, initial data.  相似文献   
10.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号